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@ Fundamentals of Reinforcement Learning
@ Agent-Environment Interface
@ Returns and Value Functions

© Basic Algorithms
o Q-Learning
o Limitations of standard RL

© Deep Reinforcement Learning
o Deep Q Networks
@ Challenges in Deep Q Networks
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Figure 1. Walking Robot [1]
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@ Fundamentals of Reinforcement Learning
@ Agent-Environment Interface
@ Returns and Value Functions
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Agent-Environment Interface

Agent: Decision-maker taking actions

Environment: World which the agent interacts with

Agent Environment

Figure 3: The agent-environment interface [3]
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Agent-Environment Interface

Action: Move the agent can make in the environment

Observation: Agent's perception of the environment

.
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Figure 3: The agent-environment interface [3]
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Agent-Environment Interface

State: Current situation or configuration of the environment

Reward: Scalar value given to an agent as feedback for its actions

Action

action a;

Agent Environment

state St+1

Observation

reward reiq

Figure 3: The agent-environment interface [3]

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar  5/14



Returns and Value Functions

o Goal: maximize cumulative reward, called the return [4]
Gt = Rep1+ Reyo + Reps +--- + Ry
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Returns and Value Functions

e Goal: maximize cumulative reward, called the discounted return  [4]
o0

Gt = Ryt +YRer2 + 7 Reys++- = > Y Repura
k=0

@ ~: discount factor; 0 <y <1
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Returns and Value Functions

e Goal: maximize cumulative reward, called the discounted return  [4]

o
Gt = Rey1 +7Req2 + 72Rt+3 +- = Z’Yth+k+1
k=0

@ ~: discount factor; 0 <y <1

State-Value function [4] Action-Value function [4]
v(s) = E[G; | St = 9] q(s,a) = E[G: | St =5, A = &]

How good it is for the agent How good it is to perform a

to be in a given state certain action in a given state

@ A policy is a strategy that the agent follows to decide actions based
on the current state 7(s) — a
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© Basic Algorithms
o Q-Learning
o Limitations of standard RL
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@ Q-Learning uses a Q-table with S x A entries to store the expected
rewards for state-action pairs

Q(St, Ar) — Q(St, At) + v |Reqr + v mgx Q(St+1,a) — Q(S:, At)] (5]

-~

Bellman error

@ The Bellman error is the difference between the current estimate of
the Q-value for a state-action pair and the "true” Q-value

@ The learning rate o determines how quickly the agent learns from its
experiences

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 8 /14



Limitations of standard RL

o Tabular methods are impractical
Problem: Curse of dimensionality
o Generalization across states
Problem: Fail to generalize across similar states
o Continuous state and action spaces
Problem: Q-Leaning designed for continuous domains
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Limitations of standard RL

o Tabular methods are impractical
Problem: Curse of dimensionality
o Generalization across states
Problem: Fail to generalize across similar states
o Continuous state and action spaces
Problem: Q-Leaning designed for continuous domains

Use a function approximator to estimate Q(S, A)

— Deep Neural Network
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© Deep Reinforcement Learning
o Deep Q Networks
@ Challenges in Deep Q Networks
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Deep Q Networks

o Extension of Q-Learning — Estimate the optimal Q-function

Action + State — Expected

Return [3]
State
:|—> DERNE— Q(S, A)
Action
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Deep Q Networks

o Extension of Q-Learning — Estimate the optimal Q-function

Action + State — Expected

State — Expected Return for

Return [3] | each Action K]
Q(S7 Al)
State
:|—> DERNE— Q(S, A) State — LSRN Q(S, A2)
Action
Q(S, As)
Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 11 /14



Deep Q Networks

o Extension of Q-Learning — Estimate the optimal Q-function

Action + State — Expected State — Expected Return for
Return [3] | each Action K]
Q(S, A1)
State
:|—> DERNE— Q(S, A) State —) Q(S, A2)
Action
Q(S, As)
2
£0) = || (Res + 7 max Q(St+1.2)) - QS A 13
a N—_——

[ J/

~ Y
target predicted
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Challenges in Deep Q Networks

o Target Network
Problem: Using the same network for selecting and evaluating
actions makes it hard for the model to stabilize and
converge
Solution: Use a target network to evaluate actions
o Experience Replay
Problem: Correlation of states lead to inefficiencies and instability
Solution: Randomly sample from a memory buffer to break
correlation
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