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Learning in Dynamic Environments

Figure 1: Walking Robot [1]

Figure 2: AlphaGo [2]
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Agent-Environment Interface

Agent: Decision-maker taking actions

Environment: World which the agent interacts with

Agent Environment

Action

Observation

action at

state st+1

reward rt+1

Figure 3: The agent-environment interface [3]
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Agent-Environment Interface

Action: Move the agent can make in the environment

Observation: Agent’s perception of the environment

Agent Environment

Action

Observation

action at

state st+1

reward rt+1

Figure 3: The agent-environment interface [3]
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Agent-Environment Interface

State: Current situation or configuration of the environment

Reward: Scalar value given to an agent as feedback for its actions

Agent Environment

Action

Observation

action at

state st+1

reward rt+1

Figure 3: The agent-environment interface [3]

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 5 / 14



Returns and Value Functions

Goal: maximize cumulative reward, called the return [4]

Gt = Rt+1 + Rt+2 + Rt+3 + · · ·+ RT

γ: discount factor; 0 ≤ γ ≤ 1

State-Value function [4]

v(s) = E[Gt | St = s]

How good it is for the agent
to be in a given state

Action-Value function [4]

q(s, a) = E[Gt | St = s,At = a]

How good it is to perform a
certain action in a given state

A policy is a strategy that the agent follows to decide actions based
on the current state π(s)→ a

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 6 / 14



Returns and Value Functions

Goal: maximize cumulative reward, called the discounted return [4]

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

γ: discount factor; 0 ≤ γ ≤ 1

State-Value function [4]

v(s) = E[Gt | St = s]

How good it is for the agent
to be in a given state

Action-Value function [4]

q(s, a) = E[Gt | St = s,At = a]

How good it is to perform a
certain action in a given state

A policy is a strategy that the agent follows to decide actions based
on the current state π(s)→ a

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 6 / 14



Returns and Value Functions

Goal: maximize cumulative reward, called the discounted return [4]

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

γ: discount factor; 0 ≤ γ ≤ 1

State-Value function [4]

v(s) = E[Gt | St = s]

How good it is for the agent
to be in a given state

Action-Value function [4]

q(s, a) = E[Gt | St = s,At = a]

How good it is to perform a
certain action in a given state

A policy is a strategy that the agent follows to decide actions based
on the current state π(s)→ a

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 6 / 14



Outline

1 Fundamentals of Reinforcement Learning
Agent-Environment Interface
Returns and Value Functions

2 Basic Algorithms
Q-Learning
Limitations of standard RL

3 Deep Reinforcement Learning
Deep Q Networks
Challenges in Deep Q Networks

Pierre Squarra Reinforcement Learning (DQN) Cognitive Algorithms Seminar 7 / 14



Q-Learning

Q-Learning uses a Q-table with S × A entries to store the expected
rewards for state-action pairs

Q(St ,At)← Q(St ,At) + α
[
Rt+1 + γmax

a
Q(St+1, a)− Q(St ,At)

]
︸ ︷︷ ︸

Bellman error

[5]

The Bellman error is the difference between the current estimate of
the Q-value for a state-action pair and the ”true” Q-value

The learning rate α determines how quickly the agent learns from its
experiences
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Limitations of standard RL

Tabular methods are impractical

Problem: Curse of dimensionality

Generalization across states

Problem: Fail to generalize across similar states

Continuous state and action spaces

Problem: Q-Leaning designed for continuous domains

Solution

Use a function approximator to estimate Q(S ,A)

→ Deep Neural Network
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Deep Q Networks

Extension of Q-Learning → Estimate the optimal Q-function

Action + State → Expected
Return [3]

State

Action

Deep NN Q(S ,A)

State → Expected Return for
each Action [3]

State Deep NN Q(S ,A2)

Q(S ,A1)

Q(S ,A3)

L(θ) =
∣∣∣∣∣∣(Rt+1 + γmax

a
Q(St+1, a)

)
︸ ︷︷ ︸

target

−Q(St ,At)︸ ︷︷ ︸
predicted

∣∣∣∣∣∣2 [3]
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Challenges in Deep Q Networks

Target Network

Problem: Using the same network for selecting and evaluating
actions makes it hard for the model to stabilize and
converge

Solution: Use a target network to evaluate actions

Experience Replay

Problem: Correlation of states lead to inefficiencies and instability
Solution: Randomly sample from a memory buffer to break

correlation
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